精英家教网 > 高中数学 > 题目详情
已知函数,当时,不等式
恒成立,则实数的取值范围为(  )
A.B.C.D.
B

试题分析:由已知得,,因为,所以,所以函数图像上在区间内的任意两点连线的斜率大于1.函数的导函数为在区间上恒成立,即在区间上恒成立,设函数,它在区间上是单调递增的,所以其最大值为,所以实数的取值范围为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在它们与坐标轴交点处的切线互相平行.
(1)求的值;
(2)若存在使不等式成立,求实数的取值范围;
(3)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的偏差,求证:函数在其公共定义域内的所有偏差都大于2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,讨论函数在[上的单调性;
(Ⅱ)如果是函数的两个零点,为函数的导数,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的图象在处的切线与圆相切,则的最大值是(    )
A.4B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于任意的,函数在区间上总不是单调函数,求的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案