精英家教网 > 高中数学 > 题目详情
已知函数(≠0,∈R)
(Ⅰ)若,求函数的极值和单调区间;
(Ⅱ)若在区间(0,e]上至少存在一点,使得成立,求实数的取值范围.
(I)的单调递增区间为,单调递减区间为时,的极小值为1.
(II)

试题分析:(I)应用导数研究函数的单调性及极值的基本题型,利用“表解法”清晰明了.
(II)解答本题的关键是,首先将问题转化成“若在区间(0,e]上至少存在一点,,使得成立,其充要条件是在区间(0,e]上的最小值小于0”.
应用分类讨论思想,就为正数、负数的不同情况加以讨论.
试题解析:(I)因为
当a=1,
,得
的定义域为的变化情况如下表:

(0,1)
1


-
0
+


极小值

所以时,的极小值为1.
的单调递增区间为,单调递减区间为
(II)因为,且
,得到
若在区间(0,e]上至少存在一点,,使得成立,
其充要条件是在区间(0,e]上的最小值小于0即可.
<0,
时,成立,
所以,在区间(0,e]上单调递减,
在区间(0,e]上的最小值为
,得,即
>0,即时,
,则成立,
所以在区间上单调递减,
所以,在区间上的最小值为>0,
显然,在区间上的最小值小于0不成立;
②若,即时,则有

(0,)

(,e)

-
0
+


极小值

所以在区间上的最小值为
=a(1?lna)<0,
,解得,即
综上,由(1)(2)可知:符合题意.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)当时,若函数在区间上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
⑴求函数的单调区间;
⑵求函数的值域;
⑶已知恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,其中,如果存在实数,使,则的值为(   )
A.必为正数B.必为负数C.必为非负D.必为非正

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足f(1)=1,且对任意x∈R都有,则不等式的解集为   (  )
A.(1,2)B.(0,1)C.(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,当时,不等式
恒成立,则实数的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是f(x)的导函数,若,,则=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则函数的图象在点处的切线方程是          .

查看答案和解析>>

同步练习册答案