定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.
(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;
(Ⅲ)根据“保三角形函数”的定义,对函数,,和数列1,,,()提出一个正确的命题,并说明理由.
(Ⅰ),(Ⅱ)先求出数列的通项公式,然后根据“三角形”数列的定义证明即可,(3)函数,是数列1,1+d,1+2d 的“保三角形函数”,必须满足三个条件:①1,1+d,1+2d是三角形数列,所以,即.②数列中的各项必须在定义域内,即.
③是三角形数列.由于,是单调递减函数,所以,解得.
解析试题分析:(1)显然,对任意正整数都成立,
即是三角形数列. 2分
因为k>1,显然有,由得,解得.
所以当时,是数列的“保三角形函数”. 5分
(2)由得,两式相减得
所以,,
经检验,此通项公式满足 7分
显然,因为,
所以 是“三角形”数列. 10分
(3)探究过程: 函数,是数列1,1+d,1+2d 的“保三角形函数”,必须满足三个条件:
①1,1+d,1+2d是三角形数列,所以,即.
②数列中的各项必须在定义域内,即.
③是三角形数列.
由于,是单调递减函数,所以,解得.
考点:本题考查了数列的运用
点评:本题是在新定义下对数列的综合考查.关于新定义的题型,在作题过程中一定要理解定义,并会用定义来解题.
科目:高中数学 来源: 题型:解答题
某企业为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的设备维修、燃料和动力等消耗的费用(称为设备的低劣化值)会逐年增加,第一年设备低劣化值是4万元,从第二年到第七年,每年设备低劣化值均比上年增加2万元,从第八年开始,每年设备低劣化值比上年增加25%.
(1)设第年该生产线设备低劣化值为,求的表达式;
(2)若该生产线前年设备低劣化平均值为,当达到或超过12万元时,则当年需要更新生产线,试判断第几年需要更新该生产线,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项.
(1)求数列、的通项公式;
(2)设数列对任意的,均有成立,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com