精英家教网 > 高中数学 > 题目详情

已知数列满足,且
(1)当时,求出数列的所有项;
(2)当时,设,证明:
(3)设(2)中的数列的前项和为,证明:.

(1);(2)详见解析;(3)详见解析.

解析试题分析:(1)先将代入找出递推公式,逐一求出数列的每一项;(2)通过式子的变形找出的形式,利用放缩法比较大小;(3)放缩法求出解析式,再利用等比数列得求和公式求和.
试题解析: (1)证明:∵

由于当时,使递推式右边的分母为零。
∴数列只有三项:.            (3分)
(2)易知:

                                                  (5分)





                                                     (8分)
(3)由(2)知:


                                 (11分)


                                                    (13分)
考点:1.由递推公式求数列的每一项;2.放缩法比较大小;3.等比数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为,数列满足
(1)求的通项公式;
(2)求证:数列为等比数列;
(3)求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足: 
(I)证明数列为等比数列,并求出数列的通项公式;
(II)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,且,.
(1)求数列的通项公式;
(2)设数列满足 ,求的通项公式;
(3)求数列 项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.
(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;
(Ⅲ)根据“保三角形函数”的定义,对函数,和数列1,,()提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,前项和为,等比数列各项均为正数,,且的公比
(1)求;(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,是数列项和,,当
(1)证明为等差数列;;
(2)设求数列的前项和
(3)是否存在自然数m,使得对任意自然数,都有成立?若存在,
求出m 的最大值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的前n项和为.已知,且成等比数列,求的通项公式.

查看答案和解析>>

同步练习册答案