精英家教网 > 高中数学 > 题目详情

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

(Ⅰ)a=1,bn=8n-5;(Ⅱ)9.

解析试题分析:(Ⅰ)依据Sn=2n-a,根据数列的前n项和,求出数列{an}的通项公式,并且根据初始条件求出a=1,an=2n-1,再根据b2+5,b4+5,b8+5成等比数列,得出(b4+5)2=(b2+5)(b8+5),解得d=0(舍去),或d=8,从而求出{bn}的通项公式为bn=8n-5;(Ⅱ)由(Ⅰ)an=2n-1代入logan=2(n-1),易知该数列是等差数列,根据等差数列的前n项和,求出Tn=n(n-1),而bn=8n-5,根据Tn>bn,n(n-1)>8n-5,解得n≥9,故所求n的最小正整数为9.
试题解析:
(Ⅰ)当n=1时,a1=S1=2-a;
当n≥2时,an=Sn-Sn-1=2n-1
∵{an}为等比数列,
∴2-a=1,解得a=1.
∴an=2n-1
设数列{bn}的公差为d,
∵b2+5,b4+5,b8+5成等比数列,
∴(b4+5)2=(b2+5)(b8+5),
又b1=3,
∴(8+3d)2=(8+d)(8+7d),
解得d=0(舍去),或d=8.
∴bn=8n-5.
(Ⅱ)由an=2n-1,得logan=2(n-1),
∴{logan}是以0为首项,2为公差的等差数列,
∴Tn=n(n-1).
由bn=8n-5,Tn>bn,得
n(n-1)>8n-5,即n2-9n+5>0,
∵n∈N*,∴n≥9.
故所求n的最小正整数为9.
考点:1.数列通项公式的求解;2.等差、等比数列的性质应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列是首项为,公差为的等差数列,其前项和为,且成等差数列.
(1)求数列的通项公式;
(2)记的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列,公差,前n项和为,且满足成等比数列.
(I)求的通项公式;
(II)设,求数列的前项和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;
(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均是正数,其前项和为,满足.
(I)求数列的通项公式;
(II)设数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项其中令集合.
(Ⅰ)若,写出集合中的所有的元素;
(Ⅱ)若,且数列中恰好存在连续的7项构成等比数列,求的所有可能取值构成的集合;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的设备维修、燃料和动力等消耗的费用(称为设备的低劣化值)会逐年增加,第一年设备低劣化值是4万元,从第二年到第七年,每年设备低劣化值均比上年增加2万元,从第八年开始,每年设备低劣化值比上年增加25%.
(1)设第年该生产线设备低劣化值为,求的表达式;
(2)若该生产线前年设备低劣化平均值为,当达到或超过12万元时,则当年需要更新生产线,试判断第几年需要更新该生产线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足:
(Ⅰ)求的通项公式及前项和
(Ⅱ)已知是等差数列,为前项和,且.求的通项公式,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,且
(1)当时,求出数列的所有项;
(2)当时,设,证明:
(3)设(2)中的数列的前项和为,证明:.

查看答案和解析>>

同步练习册答案