精英家教网 > 高中数学 > 题目详情

已知数列的各项均是正数,其前项和为,满足.
(I)求数列的通项公式;
(II)设数列的前项和为,求证:.

(Ⅰ). (Ⅱ)详见解析.

解析试题分析:(Ⅰ)首先令求出首项.
两式相减,得.所以
数列是首项为2,公比为的等比数列.由等比数列的通项公式便可得数列的通项公式.
(Ⅱ)证明有关数列前项和的不等式,一般有以下两种思路:一种是先求和后放缩,一种是先放缩后求和.在本题中,由(Ⅰ)可得:.这显然用裂项法求和,然后用放缩法即可证明.
试题解析:(Ⅰ)由题设知,         2分
两式相减,得.
所以.           4分
可见,数列是首项为2,公比为的等比数列。
所以                    6分
(Ⅱ),          8分
.             10分


=.                12分
考点:1、等比数列;2、裂项法;3、不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设正整数数列满足:,且对于任何,有
(1)求
(2)求数列的通项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足
(Ⅰ)证明为等比数列,并求的通项公式;
(Ⅱ)设;求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,设
(Ⅰ)试写出数列的前三项;
(Ⅱ)求证:数列是等比数列,并求数列的通项公式
(Ⅲ)设的前项和为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等比数列,首项.
(l)求数列的通项公式;
(2)设数列,证明数列是等差数列并求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,常数,且对一切正整数都成立。
(Ⅰ)求数列的通项公式;
(Ⅱ)设,当为何值时,数列的前项和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列 的所有项均为正数,首项成等差数列.
(1)求数列的通项公式;
(2)数列的前项和为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,且,.
(1)求数列的通项公式;
(2)设数列满足 ,求的通项公式;
(3)求数列 项和.

查看答案和解析>>

同步练习册答案