精英家教网 > 高中数学 > 题目详情

设正整数数列满足:,且对于任何,有
(1)求
(2)求数列的通项

(1)  , ;(2) .

解析试题分析:(1)令,根据算得,再根据是正整数,算得.
时,同样根据,将代入,得到的范围,根据是正整数,求得.
(2)先根据可猜想,再用数学归纳法证明.
试题解析:解:(1)据条件得   ①
时,由,即有
解得.因为为正整数,故
时,由
解得,所以
(2)方法一:由,猜想:
下面用数学归纳法证明.
1时,由(1)知均成立;
2假设成立,则,则
由①得


因为时,,所以
,所以
,所以
,即时,成立.
由1,2知,对任意
(2)方法二:
,猜想:
下面用数学归纳法证明.
1时,由(1)知均成立;
2假设成立,则,则
由①得

由②左式,得,即,因为两端为整数,
.于是
又由②右式,

因为两端为正整数,则
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

各项均不为零的数列的前项和为,且
(1)求数列的通项公式
(2)若,设,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•广东)设b>0,数列{an}满足a1=b,an=(n≥2)
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差,且第项、第项、第项分别是等比数列的第项、第项、第项.
(1)求数列的通项公式;
(2)设数列,均有成立,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的最大值为
求数列的通项公式;
求证:对任何正整数,都有
设数列的前项和,求证:对任何正整数,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是首项为,公差为的等差数列,其前项和为,且成等差数列.
(1)求数列的通项公式;
(2)记的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn.已知a1=1,=an+1n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差,且分别是正数等比数列项.
(1)求数列的通项公式;
(2)设数列对任意均有成立,设的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均是正数,其前项和为,满足.
(I)求数列的通项公式;
(II)设数列的前项和为,求证:.

查看答案和解析>>

同步练习册答案