精英家教网 > 高中数学 > 题目详情

在棱长为1的正方体ABCD-A1B1C1D1中,则平面AB1C与平面A1C1D间的距离


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:连接D1B,可以证明与面AB1C,面A1C1D都垂直,设分别交于M,N,MN为平面AB1C与平面A1C1D的距离. 可求D1N=BM=,从而MN=BD1-BM-D1N=
解答:解:连接D1B,与面AB1C与平面A1C1D分别交于M,N.
∵DD1⊥平面A1B1C1D1,∴DD1⊥AC,又∵AC⊥BD,∴AC⊥平面D1DB
∴BD1⊥AC,
同理可证BD1⊥AB1,又AC∩AB1=A,∴BD1⊥面AB1C;
同理可证,BD1⊥面C1A1D.∴MN为平面AB1C与平面A1C1D的距离
∵△AB1C为正三角形,边长为,三棱锥B-AB1C 为正三棱锥,∴M为△AB1C的中心,MA==
BM==,同理求出D1N=BM=,又BD1=,∴MN=BD1-D1N-BM=
故选:B.
点评:本题考查平行平面的距离计算,采用了间接法,转化为点面距离.本题中蕴含着两个结论①平面AB1C与∥平面A1C1D.②平面AB1C与平面A1C1D面AB1D将体对角线分成三等分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、如图所示在棱长为1的正方体ABCD-A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:
①异面直线C1P和CB1所成的角为定值;
②二面角P-BC1-D的大小为定值;
③三棱锥D-BPC1的体积为定值;
④直线CP与直线ABC1D1所成的角为定值.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,异面直线AB与CD1之间的距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1 和BB1的中点,那么直线AM与CN所成角的余弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•武汉模拟)(文科)在棱长为1的正方体ABCD-A′B′C′D′中,AC′为对角线,M、N分别为BB′,B′C′中点,P为线段MN中点.
(1)求DP和平面ABCD所成的角的正切;
(2)求四面体P-AC′D′的体积.

查看答案和解析>>

同步练习册答案