精英家教网 > 高中数学 > 题目详情
12.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离都不小于1的概率是$1-\frac{{\sqrt{3}π}}{6}$.

分析 先求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到三角形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案.

解答 解:满足条件的正三角形ABC如下图所示:
其中正三角形ABC的面积S三角形=$\frac{\sqrt{3}}{4}$×4=$\sqrt{3}$.
满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆,
则S阴影=$\frac{1}{2}$π,
则使取到的点到三个顶点A、B、C的距离都大于1的概率是:
P=$1-\frac{{\sqrt{3}π}}{6}$.
故答案为:$1-\frac{{\sqrt{3}π}}{6}$.

点评 本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,AB为圆O的直径,E为AB的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4,CE=2$\sqrt{3}$,则AD=(  )
A.3B.6C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行A=5,B=8,X=A,A=B,B=X+A程序后输出A,B的结果是(  )
A.5,8B.8,5C.8,13D.5,13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b(a,b≠0),不得分的概率为$\frac{a+b}{2}$.若他投篮一次得分ξ的数学期望$Eξ>\frac{7}{4}$,则a的取值范围是($\frac{5}{12}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,则cos(α+$\frac{β}{2}$)等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{5\sqrt{3}}{9}$D.-$\frac{\sqrt{6}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC的三个内角A,B,C成等差数列,a,b,c分别是其所对的边,若a=1,b=$\sqrt{3}$,则角A的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC中,若tanB=2,tanC=3,则角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足$\left\{\begin{array}{l}{-1≤x≤2}\\{0≤y≤2}\end{array}\right.$从区域W中随机取点M(x,y).
(1)若x∈Z,y∈Z,求点M位于第一象限的概率.
(2)若x∈R,y∈R,求|OM|≤2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的极值:
(1)y=x3-3x2+7;
(2)y=x-ln(1+x);
(3)y=x2e-x

查看答案和解析>>

同步练习册答案