精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO⊥底ABCD,数学公式,E、F分别是BC、AP的中点.
(1)求证:EF∥平面PCD;
(2)求三棱锥F-ABE的体积.

解:(1)证明:取PD的中点G,连接FG、CG(2分)
∵FG是△PAD的中位线,
∴FG∥且FG=
在菱形ABCD中,AD∥BC且AD=BC,又E为BC的中点,
∴CE∥FG且CE=FG
∴四边形EFGC是平行四边形,
∴EF∥CG(4分)
又EF?面PCD,CG?面PCD,
∴EF∥面PCD(6分)
(2)取AO的中点M,连FM,则FM∥OP,
又OP⊥面ABCD,
∴FM⊥面ABCD.
∴FM是三棱锥F-ABE的高,(8分)
(10分)
(12分)
分析:(1)取PD的中点G,连接FG、CG,由FG是△PAD的中位线,可得FG∥且FG=;由公理4可得CE∥FG且CE=FG,可得四边形EFGC是平行四边形,从而有EF∥CG,进而由线面平行的判定得到结论.
(2)取AO的中点M,连FM,则FM∥OP,又OP⊥面ABCD,所以FM⊥面ABCD,FM是三棱锥F-ABE的高,再求得△ABE的面积,最后由棱锥的体积公式求解.
点评:本题主要考查线线,线面,面面平行,垂直关系的转化与应用,还考查了几何体的体积求法,关键是论证高及几何体的底,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案