精英家教网 > 高中数学 > 题目详情

【题目】已知函数,设.

)求的极小值;

)若上恒成立,求的取值范围.

【答案】)极小值为;(.

【解析】

)求出导函数得到,通过判断导函数的符号,判断函数的单调性,求解函数的极值即可;

)由()得,通过时和时,判断函数的单调性,求解函数的最值,推出结果即可.

由题意可知,所以

时,,函数上单调递增;

时,,函数上单调递减,

所以函数处取得极小值,为

)由()得.

时,

所以函数上单调递增,所以

即当时,恒成立;

时,

又由于上单调递增,在上单调递减.

所以在上一定存在使得

时,,当时,.

所以函数上单调递减,在上单调递增,所以

所以在存在,使得

所以当时,上不恒成立

综上所述,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动圆过定点,且在轴上截得的弦的长为4.

1)若动圆圆心的轨迹为曲线,求曲线的方程;

2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的点到点的距离比到直线的距离小为坐标原点.

1)过点且倾斜角为的直线与曲线交于两点,求的面积;

2)设为曲线上任意一点,点,是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若曲线在点(10)处的切线为l : xy10,求ab的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,如下图就是在平面直角坐标系的“心形曲线”,又名RC心形线.如果以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,其RC心形线的极坐标方程为.

1)求RC心形线的直角坐标方程;

2)已知与直线为参数),若直线RC心形线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为(

A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案