【题目】已知函数,设.
(Ⅰ)求的极小值;
(Ⅱ)若在上恒成立,求的取值范围.
科目:高中数学 来源: 题型:
【题目】动圆过定点,且在轴上截得的弦的长为4.
(1)若动圆圆心的轨迹为曲线,求曲线的方程;
(2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线上的点到点的距离比到直线的距离小,为坐标原点.
(1)过点且倾斜角为的直线与曲线交于、两点,求的面积;
(2)设为曲线上任意一点,点,是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)当时,求函数的单调区间;
(2)若曲线在点(1,0)处的切线为l : x+y-1=0,求a,b的值;
(3)若恒成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,如下图就是在平面直角坐标系的“心形曲线”,又名RC心形线.如果以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,其RC心形线的极坐标方程为.
(1)求RC心形线的直角坐标方程;
(2)已知与直线(为参数),若直线与RC心形线交于两点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系.xOy中,曲线C1的参数方程为( 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为( )
A.9B.10C.11D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com