【题目】在中,角所对的边分别为,且.
(1)若,求;
(2)若,的面积为,求.
【答案】(1);(2).
【解析】
试题分析:(1)利用正弦定理化简易得,进而得到,由正弦定理即可求;(2)根据的面积为和(1)中的,易得结合余弦定理即可求得.
试题解析:(1)由正弦定理得:,……………………1分
即,……………………………………………………2分
∴,……………………………………3分
∵,∴,则,………………………………………………5分
∵,∴由正弦定理得:.………………………………6分
(2)∵的面积为,
∴,得,…………………………………………………………7分
∵,∴,…………………………………………9分
∴,即,……………………………………11分
∵,∴.…………………………………………………………12分
科目:高中数学 来源: 题型:
【题目】(1)已知椭圆方程为,点.
i.若关于原点对称的两点记直线的斜率分别为,试计算的值;
ii.若关于原点对称的两点记直线的斜率分别为,试计算的值;
(2)根据上题结论探究:若是椭圆上关于原点对称的两点,点是椭圆上任意一点,且直线的斜率都存在,并分别记为,试猜想的值,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在直角坐标系中,曲线的参数方程为(为参数),现以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3-x2+1(xR),其中a>0.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若在区间上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市决定在其经济开发区一块区域进行商业地产开发,截止2015年底共投资百万元用于餐饮业和服装业,2016年初正式营业,经过专业经济师预算,从2016年初至2019年底的四年间,在餐饮业利润为该业务投资额的,在服装业可获利该业务投资额的算术平方根.
(1)该市投资资金应如何分配,才能使这四年总的预期利润最大?
(2)假设自2017年起,该市决定对所投资的区域设施进行维护保养,同时发放员工奖金,方案如下:2017年维护保养费用百万元,以后每年比上一年增加百万元;2017年发放员工奖金共计百万元,以后每年的奖金比上一年增加.若该市投资成功的标准是:从2016年初到2019的底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的,问该市投资是否成功?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga (其中a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并给出证明;
(3)若x∈时,函数f(x)的值域是[0,1],求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距离
(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com