| A. | 2 | B. | $2\sqrt{2}$ | C. | $2\sqrt{3}$ | D. | 4 |
分析 根据抛物线的定义求出P点的纵坐标,代入抛物线方程得出抛物线的横坐标,从而解出三角形的面积.
解答
解:抛物线的焦点为F(0,$\sqrt{2}$),准线方程为y=-$\sqrt{2}$.
∵|PF|=yP+$\sqrt{2}$=4$\sqrt{2}$,∴yP=3$\sqrt{2}$.
不妨设P在第一象限,则xP2=4$\sqrt{2}×3\sqrt{2}$=24,
∴xP=2$\sqrt{6}$.
∴S△POF=$\frac{1}{2}OF•{x}_{P}$=$\frac{1}{2}×\sqrt{2}×2\sqrt{6}$=2$\sqrt{3}$.
故选:C.
点评 本题考查了抛物线的性质,根据定义得出P点坐标是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com