【题目】设函数,则下列结论正确的是( )
A.当时,函数在上有最小值;
B.当时,函数在上有最小值;
C.对任意的实数,函数的图象关于点对称;
D.方程可能有三个实数根.
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用收集到的6组数据对制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线的方程:,相关系数为,相关指数为;经过残差分析确定点为“离群点”(对应残差过大的点),把它去掉后,再用剩下的5组数据计算得到回归直线的方程:,相关系数为,相关指数为.则以下结论中,不正确的是( )
A. , B. ,
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N).
(1)求这种商品的日销售金额的解析式;
(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2–2x+2.
(1)求函数f(x)的解析式;
(2)当x∈[m,n]时,f(x)的取值范围为[2m,2n],试求实数m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为梯形,平面,,
为中点.
(1)求证:平面平面;
(2)线段上是否存在一点,使平面?若存在,找出具体位置,并进行证明:若不存在,请分析说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线是抛物线的准线,直线,且与抛物线没有公共点,动点在抛物线上,点到直线和的距离之和的最小值等于2.
(Ⅰ)求抛物线的方程;
(Ⅱ)点在直线上运动,过点做抛物线的两条切线,切点分别为,在平面内是否存在定点,使得恒成立?若存在,请求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一张坐标纸上已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与轨迹交于、两点,且直线与以为直径的圆相切,若,求的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com