【题目】设是函数的一个极值点.
(1)求与的关系式(用表示)
(2)求的单调区间;
(3)设,若存在,使得成立,求实数的取值范围.
【答案】(1);
(2)① 当时,单调递增区间为:;单调递减区间为:,;
② 当时,单调递增区间为:;单调递减区间为:,;
(3).
【解析】
试题(1)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(2)第二问关键是分离参数,把所求问题转化为求函数的最小值问题.(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.
试题解析:(1)∵
∴
由题意得:,即,
∴且
令得,
∵是函数的一个极值点.
∴,即故与的关系式
(2) ① 当时,,由得单调递增区间为:;
由得单调递减区间为:,;
② 当时,,由得单调递增区间为:;
由得单调递减区间为:,;
(3) 由(2)知:当时,,在上单调递增,在上单调递减,
,
在上的值域为
易知在上是增函数
在上的值域为
由于,又因为要存在,
使得成立,所以必须且只须, 解得:
所以:的取值范围为
科目:高中数学 来源: 题型:
【题目】已知有限集,如果中元素满足,就称为“复活集”.
(1)判断集合是否为“复活集”,并说明理由;
(2)若,,且是“复活集”,求的取值范围;
(3)若,求证:“复活集”有且只有一个,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为,( 为参数),为曲线上的动点,动点满足(且),点的轨迹为曲线.
(1)求曲线的方程,并说明是什么曲线;
(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中, 点的极坐标为,射线与的异于极点的交点为,已知面积的最大值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,向量,设函数的图象关于直线对称,其中常数.
(1)若,求的值域;
(2)将函数的图象向左平移个单位,再向下平移1个单位,得到函数的图象,用五点法作出函数在区间上的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时, 内切圆的半径为.
(1)求椭圆的方程;
(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com