精英家教网 > 高中数学 > 题目详情
(2006•南汇区二模)已知(2x2+1)6=a0+a1x2+a2x4+…+a6x12,则a0+a2+a4+a6的值是
365
365
分析:在所给的等式中,令x2=1可得a0+a1+a2+a3+a4+a5+a6=36,再令 x2=-1可得 a0-a1+a2-a3+a4-a5+a6=1,
两式相加初除以2可得a0+a2+a4+a6的值.
解答:解:在(2x2+1)6=a0+a1x2+a2x4+…+a6x12 中,令x2=1可得a0+a1+a2+a3+a4+a5+a6=36
再令 x2=-1可得 a0-a1+a2-a3+a4-a5+a6=1,
两式相加初除以2可得a0+a2+a4+a6=365,
故答案为 365.
点评:本题主要考查二项式定理的应用,在二项展开式中,通过给变量赋值,求得某些项的系数和,是一种简单有效的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)已知sinα=
3
5
,且
π
2
<α<π,则tan(α+
π
4
)
=
1
7
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若虚数z满足z2=2
.
z
,则|z|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若|
a
|=3,|
b
|=4,
a
b
的夹角为60°,则|
a
+
b
|
=
37
37

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南汇区二模)若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是
1
3
,1)
1
3
,1)

查看答案和解析>>

同步练习册答案