精英家教网 > 高中数学 > 题目详情
13.满足条件a=4,b=5$\sqrt{2}$,A=45°的△ABC的个数是(  )
A.1B.2C.无数个D.不存在

分析 由已知,利用正弦定理可求sinB=$\frac{5}{4}$>1,从而可得满足此条件的三角形不存在.

解答 解:∵a=4,b=5$\sqrt{2}$,A=45°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{5\sqrt{2}×\frac{\sqrt{2}}{2}}{4}$=$\frac{5}{4}$>1,不成立.
故选:D.

点评 本题主要考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{a^x},x<0\\(a-3)x+4a,x≥0\end{array}$满足对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_2}-{x_1}}}$>0成立,则实数a的取值范围是$(0,\frac{1}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从一条生产线上每隔30min取一件产品,共取了n件,测得它们的长度(单位:cm)后,画出其频率分布直方图如图所示,若长度在[20,25)cm内的频数为40,则长度在[10,15)cm内的产品共有16件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,围建一个面积为100m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为56元/米,新墙的造价为200元/米,设利用的旧墙长度为x(单位:米),修建此矩形场地围墙的总费用y(单位:元)
(1)将y表示为x的函数;
(2)求当x为何值时,y取得最小值,并求出此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a,b∈R,函数f(x)=ax+$\frac{1}{x}$.g(x)=x2+b,
(1)若a=-3,b=0,求函数h(x)=f(x)•g(x)在区间(0,1]上的最值;
(2)若函数m(x)=f(x)+g(x)在区间(0,1]上单调递减,求实数a的最大值;
(3)若对任意实数a∈(-∞,-1),关于x的方程f(x)=g(x)有三个不同的解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了研究变量x与y的线性相关性,甲、乙两人分别做了研究,并利用线性回归方法得到回归方程l1和l2,非常巧合的是,两人计算的$\overline x$相同,$\overline y$也相同,下列说法正确的是(  )
A.l1和l2相同B.l1和l2一定平行
C.l1和l2相交于点($\overline x$,$\overline y$)D.无法判断l1和l2是否相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正实数a,b满足a+2b=4,则ab的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P是椭圆E:$\frac{{x}^{2}}{4}$+y2=1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,动点Q满足$\overrightarrow{OQ}$=$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$
(Ⅰ)求动点Q的轨迹方程;
(Ⅱ)若已知点A(0,-2),过点A作直线l与椭圆E相交于B、C两点,求△OBC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l:x+ay+2=0的倾斜角为$\frac{3π}{4}$,则直线l在y轴上的截距为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案