精英家教网 > 高中数学 > 题目详情
17.已知角α的终边上一点P的坐标为(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则sinα的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 由条件利用任意角的三角函数的定义,求得sinα的值.

解答 解:∵角α终边上一点P的坐标是(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),
∴x=sin$\frac{2π}{3}$,y=cos$\frac{2π}{3}$,r=|OP|=1,∴sinα=cos$\frac{2π}{3}$=-$\frac{1}{2}$.
故选:B.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设y=x+$\frac{1}{x-2}$(x>2).当x=a时,y有最小值,则a的值是(  )
A.4B.3C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=2,an+1=3an+3n
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求证:Sn≥2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanθ=7,则sinθcosθ+cos2θ=$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y-2|的最小值是5-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若$\overrightarrow{AC}•\overrightarrow{BE}=4$,则AB的长为(  )
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个盒子中放有大小相同的6个小球,其中白球4个,红球2个.任取两次,每次取一个球,每次取后不放回,已知第一次取到的是白球,则第二次也取到的是白球的概率为(  )
A.$\frac{3}{5}$B.$\frac{5}{12}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a1=1,点(an,an+1)在函数y=2x+3的图象上.
(Ⅰ)求证:{an+3}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)求数列{n(an+3)}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l经过点A(-2,0),B(-5,3),则l的斜率为(  )
A.2B.-1C.0D.1

查看答案和解析>>

同步练习册答案