| A. | $\frac{{3\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{3}}}{12}$ |
分析 正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,球的半径,就是三棱锥的高,再求底面面积,即可求解三棱锥的体积.
解答 解:正三棱锥的四个顶点都在半径为1的球面上,其中底面的
三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,
设球的半径为1,所以底面三角形的边长为a,$\frac{2}{3}×\frac{\sqrt{3}}{2}a=1$,∴a=$\sqrt{3}$
该正三棱锥的体积:$\frac{1}{3}×\frac{\sqrt{3}}{4}×(\sqrt{3})^{2}×1$=$\frac{\sqrt{3}}{4}$.
故选:C.
点评 本题考查棱锥的体积,棱锥的外接球的问题,考查空间想象能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com