精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式an=-2n+11,前n项和Sn
(1)求数列{an}的前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.
分析:(1)依题意,可知数列{an}为等差数列,an=-2n+11,利用等差数列的求和公式即可求得数列{an}的前n项和Sn
(2)由an=-2n+11≥0可知,从第六项开始为负,从而可求得|a1|+|a2|+|a3|+…+|a14|.
解答:解:(1)∵an=-2n+11,
∴an+1-an=-2(n+1)+11-(-2n+11)=-2,
∴数列{an}为公差为2的等差数列,又a1=9,
∴数列{an}的前n项和Sn=
(a1+an)×n
2
=
(9+11-2n)×n
2
=10n-n2
(2)由an=-2n+11≥0得:n≤
11
2
,又n∈N*
∴当n=1,2,…5时,an>0,当n≥6时,an<0,
∴|a1|+|a2|+|a3|+…+|a14|
=a1+a2+…+a5-a6-a7-…-a14
=-a1-a2-…-a5-a6-a7-…-a14+2(a1+a2+…+a5
=-
(a1+a14)×14
2
+2×
(a1+a5)×5
2

=-
(9-17)×14
2
+2×
(9+1)×5
2

=56+50
=106.
点评:本题考查数列的求和,突出考查等差数列的求和公式,(2)中去掉绝对值符号后,再求和是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
1
Sn+n
,则数列{bn}的前n项和的取值范围为(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=
an
bn+1
,其中a、b均为正常数,那么数列{an}的单调性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知数列{an}的通项公式是 an=
na
(n+1)b
,其中a、b均为正常数,那么 an与 an+1的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1
n+1
+
n
求它的前n项的和.

查看答案和解析>>

同步练习册答案