精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,点的极坐标,直线经过点,且倾斜角为.

1)写出曲线的直角坐标方程和直线的标准参数方程;

2)直线与曲线交于两点,直线的参数方程为t为参数),直线与曲线交于两点,求证:.

【答案】1t为参数);(2)证明见解析.

【解析】

1)利用消参得到曲线的直角坐标方程,求点的直角坐标,再直接写成直线的标准参数方程;(2)首先将直线的参数方程和曲线联立,利用参数的几何意义可知,同理可得,利用根与系数的关系证明.

1)由为参数)消去参数

得点的直角坐标为

∴直线的标准参数方程为t为参数)

2)将直线的标准参数方程t为参数)代入

化简得

设方程两根为,则

由直线参数方程中的几何意义得

同理将的参数方程代入的参数方程可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)是函数的极值点,求实数的值;

(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2是椭圆Cab0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过F1的直线l交椭圆于AB两点,当△ABF2面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的图象在处的切线方程;

2)求证:方程有两个实数根;

3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为正实数,且满足a+b+c1.证明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)设直线轴, 轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全民抗击新冠肺炎疫情期间,北京市开展了停课不停学活动,此活动为学生提供了多种网络课程资源以供选择使用.活动开展一个月后,某学校随机抽取了高三年级的甲、乙两个班级进行网络问卷调查,统计学生每天的学习时间,将样本数据分成五组,并整理得到如下频率分布直方图:

1)已知该校高三年级共有600名学生,根据甲班的统计数据,估计该校高三年级每天学习时间达到5小时及以上的学生人数;

2)已知这两个班级各有40名学生,从甲、乙两个班级每天学习时间不足4小时的学生中随机抽取3人,记从甲班抽到的学生人数为,求的分布列和数学期望;

3)记甲、乙两个班级学生每天学习时间的方差分别为,试比较的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案