精英家教网 > 高中数学 > 题目详情

由不等式组围成的三角形区域内有一个内切圆,向该三角形区域内随机投一个点,该点落在圆内的概率是关于t的函数P(t),则(  )

AP′(t)0 BP′(t)0 CP′(t)0 DP′(t)符号不确定

 

C

【解析】若围成三角形,则只可能恒为等腰直角三角形,内切圆半径r(7t)(7t)P(t)(2)2,该值与t无关,所以P′(t)0.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年广东省广州市毕业班综合测试一文科数学试卷(解析版) 题型:填空题

如图,是圆的切线,切点为点,直线与圆交于两点,的角平分线交弦两点,已知,则的值为 .

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷1练习卷(解析版) 题型:解答题

已知函数f(x)tan.

(1)f的值;

(2)α,若f2,求cos的值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷6练习卷(解析版) 题型:解答题

甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:

甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

3

4

8

15

 

 

 

 

 

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

15

x

3

2

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

1

2

8

9

 

 

 

 

 

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

10

10

y

3

(1)计算xy的值;

(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;

(3)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.

 

甲校

乙校

总计

优秀

 

 

 

非优秀

 

 

 

总计

 

 

 

参考数据与公式:由列联表中数据计算K2. ?

临界值表

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷6练习卷(解析版) 题型:填空题

一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷6练习卷(解析版) 题型:选择题

在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积和的,且样本容量为160,则中间一组的频数为(  )

A32 B0.2 C40 D0.25

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:解答题

已知抛物线Cy22px(p0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.

(1)求抛物线C的方程;

(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP||PB|,求FAB的面积.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:解答题

如图,在边长为4的菱形ABCD中,DAB60°.EF分别在边CDCB上,点E与点CD不重合,EFACEFACO.沿EFCEF翻折到PEF的位置,使平面PEF平面ABFED.

(1)求证:BD平面POA

(2)记三棱锥PABD的体积为V1,四棱锥PBDEF的体积为V2,求当PB取得最小值时V1V2的值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:解答题

已知函数f(x)2sin2 cos 2x1(xR)

(1)若函数h(x)f(xt)的图象关于点对称,且t(0π),求t的值;

(2)pxq|f(x)m|3,若pq的充分不必要条件,求实数m的取值范围.

 

查看答案和解析>>

同步练习册答案