精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD的底面ABCD为直角梯形,且AD∥BC,AD⊥AB,E是PC的中点,PA=BC=2AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:DE∥平面PAB;
(2)求证:平面PAD⊥平面PAB;
(3)求三棱锥D-PAC的体积.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)取PB的中点O,连接OA,OE,四边形DAOE是平行四边形,可得DE∥AO,利用线面平行的判定定理,即可证明DE∥平面PAB;
(2)证明DA⊥平面PAB,再利用面面垂直的判定定理即可证得平面PAD⊥平面PAB;
(3)由VD-PAC=VP-DAC=VP-ABC=VC-PAB=
1
3
S△PAB•BC即可求得答案.
解答: (1)证明:取PB的中点O,连接OA,OE,则EO∥BC∥DA,且EO=DA,
∴四边形DAOE是平行四边形,
∴DE∥AO,
∵DE?平面PAB,AO?平面PAB,
∴DE∥平面PAB;
(2)证明:∵BC⊥PB,
∴DA⊥PB,
∵AD⊥AB且AB∩PB=B,
∴DA⊥平面PAB,
又∵DA?平面PAD,
∴平面PAD⊥平面PAB;
(2)∵VD-PAC=VP-DAC=VP-ABC=VC-PAB
由(1)知DA⊥平面PAB,且AD∥BC,∴BC⊥平面PAB,
∴VC-PAB=
1
3
S△PAB•BC=
1
3
×
1
2
PA×ABsin∠PAB•BC=
1
6
×1×2×
3
2
×1=
3
6
点评:本题考查线面平行,考查平面与平面垂直的判定,考查棱锥的体积,着重考查锥体体积轮换公式的应用,突出化归思想的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图为喜宴中的一个形如正三棱锥的四层香槟台,搭建香槟塔时,先用10个香槟杯搭出一个等边三角形形状作为底层,然后三个香槟杯上叠一个香槟杯,向上搭建.若由上而下,把每一层的香槟杯数量组成数列{an}.
(1)观察图中的变化规律,若如上方式搭建一个n层的香槟台,则最底层香槟杯数量an应为多少?
(2)记bn=2 
2an
n+1
,求b1,b2,b3
(3)判断数列{bn}是什么数列?并求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
4x+2

(1)若0<a<1,求f(a)+f(1-a)的值;
(2)求f(
1
2009
)+f(
2
2009
)+…+f(
2008
2009
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=logax(a>0且a≠1)与g(x)的图象关于点(2,3)对称.
(1)求g(x)的解析式;  
(2)若f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,三角形ABC顶点分别为A(a,0),B(0,b),C(0,c),点D(d,0)在线段OA上(异于端点),设a,b,c,d均为非零实数,直线BD交AC于点E,则OE所在的直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的重n2-6n+12克,这些求等可能地从袋里取出(不受重量、号码的影响)
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆:x2+2y2=a,(a>0)的左焦点到直线y=x-2的距离为2
2
,求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x,对于20个数:a1,a2,…,a10;b1,b2,…,b10∈[0,1],且满足:
10
i=1
f2(ai)=
10
i=1
f2(bi)
,则
10
i=1
f(ai)•f(bi)
10
i=1
f2(ai)
的最小值是(  )
A、
2
5
B、
4
5
C、
6
5
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-lnx,其中a>
1
2

(1)求函数f(x)的单调区间;
(2)设f(x)的最小值为g(a),证明函数g(x)没有零点.

查看答案和解析>>

同步练习册答案