分析 利用诱导公式化简函数解析式,结合特殊角的三角函数值即可求值得解.
解答 解:∵f(α)=$\frac{sin(π-α)cos(2π-α)cos(-α+\frac{3π}{2})}{cos(\frac{π}{2}-α)sin(-π-α)}$=$\frac{sinαcosα(-sinα)}{si{n}^{2}α}$=-cosα,
∴f(-$\frac{31π}{3}$)=-cos(-$\frac{31π}{3}$)=-cos($\frac{31π}{3}$)=-cos(10π+$\frac{π}{3}$)=-$\frac{1}{2}$.
点评 本题主要考查了诱导公式,特殊角的三角函数值的应用,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数 | |
| B. | 其图象关于直线x=-$\frac{π}{4}$对称 | |
| C. | 函数g(x)是奇函数 | |
| D. | 当x$∈[\frac{π}{3},\frac{4π}{9}]$时,函数g(x)的值域是[-$\sqrt{3}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{48π}{5}$ | B. | $\frac{84π}{5}$ | C. | 36π | D. | $\frac{168π}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com