分析 由条件利用正弦函数、正切函数的图象和性质判断各个选项是否正确,从而得出结论.
解答 解:①∵函数y=f(x)=|sin(x+$\frac{π}{6}$)|=|$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx|,
∴f(-x)=|sin(-x+$\frac{π}{6}$)|=|$\frac{1}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx|≠f(x),故不是偶函数,故①错误;
②令2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,求得x=$\frac{kπ}{2}$+$\frac{5π}{12}$,可得函数y=sin(2x-$\frac{π}{3}$)的图象的一条对称轴为x=$\frac{5}{12}$π,故②正确;
③令2x=$\frac{kπ}{2}$,k∈Z,求得x=$\frac{kπ}{4}$,可得函数函数y=tan2x的图象的一个对称中心是($\frac{π}{4}$,0),故③正确;
④若A+B=$\frac{π}{4}$,则tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=1,即 tanA+tanB=1-tanAtanB,
∴(1+tanA)(1+tanB)=1+tanA+tanB+tanAtanB=2,故④正确,
故答案为:②③④.
点评 本题主要考查正弦函数、正切函数的图象和性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{7}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com