精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2(1+x)ln(1+x)-x2-2x,x∈[0,+∞),求f(x)的最大值.

解:由f(x)=2(1+x)ln(1+x)-x2-2x得f'(x)=2ln(1+x)-2x,
令g(x)=2ln(1+x)-2x,则
当-1<x<0时,g'(x)>0,g(x)在(-1,0)上为增函数;
当x>0时,g'(x)<0,g(x)在(0,+∞)上为减函数,
所以g(x)在x=0处取得极大值,且g(0)=0,
故f'(x)≤0(当且仅当x=0时取等号),
所以函数f(x)为[0,+∞)上的减函数,
则f(x)≤f(0)=0,即f(x)的最大值为0.
分析:求导函数f'(x)=2ln(1+x)-2x,构造新函数g(x)=2ln(1+x)-2x,确定g(x)在x=0处取得极大值,且g(0)=0,从而可得f'(x)≤0(当且仅当x=0时取等号),由此可求函数的最大值.
点评:本题主要考查复合函数求导等知识,考查函数的最值,考查运算求解、推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案