精英家教网 > 高中数学 > 题目详情
已知函数f(x)定义域为R,且f(0)=1,对任意x,y∈R恒有f(x-y)=f(x)-
1
3
y2(2x-y+3),
(1)求函数f(x)的表达式;
(2)若方程f(x)=a有三个实数解,求实数a的取值范围.
(1)因为f(0)=1,对任意x,y∈R恒有f(x-y)=f(x)-
1
3
y2(2x-y+3)

∴令y=x,代入可得f(0)=f(x)-
1
3
x2(2x-x+3)
,即f(x)=
1
3
x3+x2+1

(2)因为方程f(x)=a有三个实数解,所以函数y=f(x)与y=a图象有三个交点
又因为f′(x)=x2+2x=x(x+2),
当x∈(-∞,-2)时,f′(x)>0,f(x)单调递增;
当x∈(-2,0)时,f′(x)<0,f(x)单调递减;
当x∈(0,+∞)时,f′(x)>0,f(x)单调递增,
∴当x=-2时f(x)取极大值,f(x)极大值=
7
3

当x=0时,f(x)取极小值,f(x)极小值=1,
1<a<
7
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(Ⅱ)判断这样的函数是否具有奇偶性和其单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.
(1)判断f(x)的奇偶性;
(2)若f(1)=1,解关于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•连云港二模)已知函数f(x)定义在正整数集上,且对于任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,则f(2009)=
4018
4018

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)证明:f(x)在(-1,1)上为奇函数;
(II)求f(an)关于n的函数解析式;
(III)令g(n)=f(an)且数列{an}满足bn=
1
g(n)
,若对于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,对任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,则f(2013)=
 

查看答案和解析>>

同步练习册答案