精英家教网 > 高中数学 > 题目详情

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

【答案】C

【解析】

根据合情推理与演绎推理的概念,得到A是归纳推理,B是归纳推理,C是演绎推理,D是类比推理,即可求解.

根据合情推理与演绎推理的概念,可得:

对于A中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理;

对于B中, 猜想数列的通项公式为,属于归纳推理,不是演绎推理;

对于C中,半径为的圆的面积,则单位圆的面积,属于演绎推理;

对于D中, 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为,属于类比推理,

综上,可演绎推理的C项,故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于任意的,若数列同时满足下列两个条件,则称数列具有性质m存在实数M,使得成立.

数列中,),判断是否具有性质m

若各项为正数的等比数列的前n项和为,且,求证:数列具有性质m

数列的通项公式对于任意,数列具有性质m,且对满足条件的M的最小值,求整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分.

(1)求第七组的频率,并完成频率分布直方图;

(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);

(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥 中,底面 是边长为 2 的正三角形,顶点 在底面上的射影为的中心,若的中点,且直线与底面所成角的正切值为,则三棱锥外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A是同时符合以下性质的函数f(x)组成的集合:

x[0,+),都有f(x)∈(1,4]f(x)[0,+)上是减函数.

(1)判断函数f1(x)2f2(x)1 (x0)是否属于集合A,并简要说明理由;

(2)(1)中你认为是集合A中的一个函数记为g(x),若不等式g(x)g(x2)k对任意的x0总成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)讨论函数的单调性;

(2)若,讨论函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95多的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案