【题目】下面几种推理中是演绎推理的为( )
A. 由金、银、铜、铁可导电,猜想:金属都可导电
B. 猜想数列
的通项公式为![]()
C. 半径为
的圆的面积
,则单位圆的面积![]()
D. 由平面直角坐标系中圆的方程为
,推测空间直角坐标系中球的方程为![]()
科目:高中数学 来源: 题型:
【题目】对于任意的
,若数列
同时满足下列两个条件,则称数列
具有“性质m”:
;
存在实数M,使得
成立.
数列
、
中,
、
(
),判断
、
是否具有“性质m”;
若各项为正数的等比数列
的前n项和为
,且
,
,求证:数列
具有“性质m”;
数列
的通项公式
对于任意
,数列
具有“性质m”,且对满足条件的M的最小值
,求整数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组
,
,第二组
,
,
第八组
,
,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,底面
是边长为 2 的正三角形,顶点
在底面
上的射影为
的中心,若
为
的中点,且直线
与底面
所成角的正切值为
,则三棱锥
外接球的表面积为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A是同时符合以下性质的函数f(x)组成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-
和f2(x)=1+3·
(x≥0)是否属于集合A,并简要说明理由;
(2)把(1)中你认为是集合A中的一个函数记为g(x),若不等式g(x)+g(x+2)≤k对任意的x≥0总成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com