精英家教网 > 高中数学 > 题目详情
1.给出下列命题:
①向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点必在一直线上;
②两个单位向量是相等向量;
③若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,则$\overrightarrow a=\overrightarrow c$;
④若一个向量的模为0,则该向量与任一向量平行;
⑤若$\overrightarrow a$与$\overrightarrow b$共线,$\overrightarrow b$与$\overrightarrow c$共线,则$\overrightarrow a$与$\overrightarrow c$共线
⑥若Sn=$sin\frac{π}{7}+sin\frac{2π}{7}+…+sin\frac{nπ}{7}$(n∈N*),则在S1,S2,…,S100中,正数的个数是72个.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

分析 ①根据向量关系的性质进行判断,
②单位向量的方向不一定相同,
③根据相等向量的定义进行判断,
④模长为0的向量为零向量,
⑤当$\overrightarrow b$=$\overrightarrow{0}$时,结论不成立,
⑥由于sin$\frac{π}{7}$>0,sin$\frac{2π}{7}$>0,…sin$\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$<0,…sin$\frac{13π}{7}$<0,sin$\frac{14π}{7}$=0,可得到S1>0,…S13=0,而S14=0,从而可得到周期性的规律,从而得到答案.

解答 解:①向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则$\overrightarrow{AB}$∥$\overrightarrow{CD}$,但A、B、C、D四点不一定在一直线上,故①错误;
②两个单位向量是相等向量错误,长度相等,但方向不一定相同,故②错误;
③若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,则$\overrightarrow a=\overrightarrow c$;正确,故③正确,
④若一个向量的模为0,则该向量为零向量,零向量与任一向量平行,故④正确,
⑤若$\overrightarrow a$与$\overrightarrow b$共线,$\overrightarrow b$与$\overrightarrow c$共线,则$\overrightarrow a$与$\overrightarrow c$共线,错误,当$\overrightarrow b$=$\overrightarrow{0}$时,结论不成立,故⑤错误,
⑥∵sin$\frac{π}{7}$>0,sin$\frac{2π}{7}$>0,…sin$\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$<0,…sin$\frac{13π}{7}$<0,sin$\frac{14π}{7}$=0,
∴S1=sin$\frac{π}{7}$>0,
S2=sin$\frac{π}{7}$+sin$\frac{2π}{7}$>0,
…,
S8=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…sin$\frac{6π}{7}$+sin$\frac{7π}{7}$+sin$\frac{8π}{7}$=sin$\frac{2π}{7}$+…+sin$\frac{6π}{7}$+sin$\frac{7π}{7}$>0,
…,
S12>0,
而S13=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…+sin$\frac{6π}{7}$+sin$\frac{7π}{7}$+sin$\frac{8π}{7}$+sin$\frac{9π}{7}$+…+sin$\frac{13π}{7}$=0,
S14=S13+sin$\frac{14π}{7}$=0+0=0,
又S15=S14+sin$\frac{15π}{7}$=0+sin$\frac{π}{7}$=S1>0,S16=S2>0,…S27=S13=0,S28=S14=0,
∴S14n-1=0,S14n=0(n∈N*),在1,2,…100中,能被14整除的共7项,
∴在S1,S2,…,S100中,为0的项共有14项,其余项都为正数.
故在S1,S2,…,S100中,正数的个数是86.故⑥错误,
故正确的是③④,
故选:B

点评 本题主要考查命题的真假判断,涉及向量的有关概念和性质,考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知复数z=x+yi(x,y∈R),且有$\frac{x}{1-i}$=1+yi,$\overline{z}$是z的共轭复数,则$\frac{|z|}{\overline{z}}$的虚部为(  )
A.$\frac{1}{5}$B.$\frac{1}{5}$iC.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法中正确的个数是(  )
(1)任何一个算法都包含顺序结构;
(2)条件分支结构中一定包含循环结构;
(3)循环结构中一定包含条件分支结构.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(1,m).若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m的值为$-\frac{2}{3}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\int_1^3{f(x)dx=56}$,则(  )
A.$\int_1^2{f(x)dx=28}$B.$\int_2^3{f(x)dx=28}$
C.$\int_1^2{2f(x)dx=56}$D.$\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知点A(-2,0),B(2,0),动点C满足条件:△ABC的周长为10,记动点C的轨迹为曲线M.
(1)求曲线M的方程;
(2)若直线l与曲线M相交于E、F两点,若以EF为直径的圆过点D(3,0),求证:直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A,B两点,则直线AB的方程是3x-3y-10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把红桃、黑桃、方块、梅花四张纸牌随机发给甲、乙、丙、丁四个人,每人分得一张,事件“甲分得梅花”与事件“乙分得梅花”是互斥事件,但不是对立事件.
(填“对立”、“不可能”、“互斥事件”、“互斥事件,但不是对立”中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,则硬币完全落入圆内的概率是$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案