精英家教网 > 高中数学 > 题目详情
17.若直线a,b与两异面直线c,d都相交,则直线a,b的位置关系是相交或异面.

分析 画出草图,当点D与点B重合时,两条直线相交,当点D与点B不重合时,两条直线异面,即可得到结论.

解答 解:如图,直线c与d是异面直线,直线a与直线b分别与两条异面直线c与d相交与点A,B,C,D,

根据题意可得当点D与点B重合时,两条直线相交,当点D与点B不重合时,两条直线异面.
故答案为:相交或异面.

点评 本题主要考查空间中直线与直线的位置关系,考查分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.二项式(a-1)8的展开式中,最大的二项式系数为(  )
A.C${\;}_{8}^{4}$B.-C${\;}_{8}^{4}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈R+,且满足x+2y=2xy,那么x+4y的最小值为(  )
A.3-$\sqrt{2}$B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)在点x0处取得极值,则必有(  )
A.f′(x0)=0B.f′(x0)<0
C.f′(x0)=0且f″(x0)<0D.f′(x0)或f′(x0)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线l的倾斜角是直线y=2x+3倾斜角的2倍,则直线l的斜率为$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+lnx(a为正实数),且f(x)的导函数f′(x)在x=$\frac{1}{2}$处取极小值.
(1)求实数a的值;
(2)设函数g(x)=3x+x2,若方程f(x)-g(x)+m=0在x∈[$\frac{1}{2}$,2]内恰有两个不相等的实数根,求实数m的取值范围(参考数据:ln2≈0.693);
(3)记函数h(x)=f(x)-$\frac{3}{2}$x2-(b+1)x(b≥$\frac{3}{2}$).设x1,x2(x2>x1>0)是函数h(x)的两个极值点,点A(x1,h(x1)),B(x2,h(x2)),直线AB的斜率为kAB.若kAB≤$\frac{r}{{x}_{1}{-x}_{2}}$对任意x2>x1>0恒成立,求实数r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=ex(ax2+3),其中a为实数,e为自然对数的底数
(1)当a=-1时,求f(x)的极值;
(2)若f(x)为[1,2]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则该几何体体积=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a$=(4,-2),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(6,8).
(1)求($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow c$;
(2)若$\overrightarrow a$⊥($\overrightarrow b$-λ$\overrightarrow c$),求实数λ的值.

查看答案和解析>>

同步练习册答案