精英家教网 > 高中数学 > 题目详情
16.过定点P(1,0)作直线l,使l与曲线y2=4x相交于A,B两点,且|AB|=5,则这样的直线l有2条.

分析 当直线l的斜率不存在时,|AB|=4不满足条件;当直线l的斜率存在时,设l的方程为:y=k(x-1),判断满足条件的k的个数,可得答案.

解答 解:当直线l的斜率不存在时,|AB|=4不满足条件;
当直线l的斜率存在时,设l的方程为:y=k(x-1),
代入y2=4x得:k2x2+(2k2-4)x+k2=0
若|AB|=5,则A,B两点到准线的和为5,
故x1+x2+2=5,即x1+x2=$\frac{4-2{k}^{2}}{{k}^{2}}$=3,
解得:k=±$\frac{2\sqrt{5}}{5}$,
即这样的直线有两条,
故答案为:2

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,熟练掌握抛物线的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,PA⊥底面ABCD,CD=2,底面ABCD为梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,点E在棱PB上,且PE=2EB.
(1)求证:PD∥平面EAC;
(2)求直线PD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,-$\sqrt{3}$),B(-2,2$\sqrt{3}$).
(1)求方向与AB一致的单位向量;
(2)设向量$\overrightarrow{AC}$与向量$\overrightarrow{AB}$的夹角为60°,且|$\overrightarrow{AC}$|=2,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=(ax-a-x)($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一扇形的周长为8cm,若已知扇形的面积为3cm2,则其圆心角的弧度数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点(4,-$\sqrt{3}$),且与直线y=-$\frac{\sqrt{3}}{3}$(x-2)垂直的直线斜截式方程为y+$\sqrt{3}$=$\sqrt{3}(x-4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若cosx=m,则$\frac{sin\frac{5}{2}x}{2sin\frac{x}{2}}$等于2m2+m-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在锐角三角形ABC中,若sinA=$\frac{\sqrt{2}}{2}$,sinB=$\frac{\sqrt{3}}{2}$,则C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$.
(1)若f(x)=$\frac{3}{2}$,求cos($\frac{2π}{3}$-x)的值;
(2)将函数y=f(x)的图象向右平移$\frac{2π}{3}$个单位得到y=g(x)的图象,若函数y=g(x)-k在[0,$\frac{7π}{3}$]上有零点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案