精英家教网 > 高中数学 > 题目详情
19.若过点P(1,-1)作圆x2+y2+kx+2y+k2=0的切线有两条,则实数k的取值范围是$-\frac{{2\sqrt{3}}}{3}<k<-1$或$0<k<\frac{{2\sqrt{3}}}{3}$.

分析 由题意可知P在圆外时,过点P总可以向圆x2+y2+kx+2y+k2=0作两条切线,可得12+(-1)2+k-2+k2>0,且k2+4-4k2>0,即可得到k的取值范围.

解答 解:由题意可知P在圆外时,过点P总可以向圆x2+y2+kx+2y+k2=0作两条切线,
所以12+(-1)2+k-2+k2>0,且k2+4-4k2>0解得:$-\frac{{2\sqrt{3}}}{3}<k<-1$或$0<k<\frac{{2\sqrt{3}}}{3}$,
则k的取值范围是$-\frac{{2\sqrt{3}}}{3}<k<-1$或$0<k<\frac{{2\sqrt{3}}}{3}$.
故答案为:$-\frac{{2\sqrt{3}}}{3}<k<-1$或$0<k<\frac{{2\sqrt{3}}}{3}$.

点评 此题考查学生掌握点与圆的位置的判别方法,灵活运用两点间的距离公式化简求值,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某中学从高一年级、高二年级、高三年级各选1名男同学和1名女同学,组成社区服务小组.现从这个社区服务小组的6名同学中随机选取2名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的2人都是女同学的概率;
(Ⅱ)设“选出的2人来自不同年级且是1名男同学和1名女同学”为事件N,求事件N发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若一个三位正整数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从1,2,3,4,5这5个数字中任取3个数字,组成没有重复数字的三位数,其中“伞数”共有20个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x(ex-1)+lnx的图象在点(1,f(1))处的切线方程是(  )
A.y=2ex-e-1B.y=2ex-e+1C.y=2ex+e-1D.y=2ex+e+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若3x1-4y1-2=0,3x2-4y2-2=0,则过A(x1,y1),B(x2,y2)两点的直线方程是(  )
A.4x+3y-2=0B.3x-4y-2=0C.4x+3y+2=0D.3x-4y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(log2x)=x-$\frac{1}{x}$.
(1)求f(x)的表达式;
(2)不等式2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:x2-x≥6,q:x∈Z,并且“p且q”与“非q”同时为假命题,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足如下条件:①函数f(x)的图象关于y轴对称;②对任意x∈R,f(2+x)-f(2-x)=0;③当x∈[0,2]时.f(x)=x;④函数f(n)(x)=f(2n-1•x),n∈N*,若过点(-1,0)的直线l与函数f(4)(x)的图象在[0,2]上恰有8个交点.则直线1斜率k的取值范围是(  )
A.(0,$\frac{8}{11}$)B.(0,$\frac{11}{8}$)C.(0,$\frac{8}{19}$)D.(0,$\frac{19}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|-2x2+x+3≥0},B={x|x2-2x+1>0},求(1)A∩B;(2)(∁RA)∪B.

查看答案和解析>>

同步练习册答案