| A. | (0,$\frac{8}{11}$) | B. | (0,$\frac{11}{8}$) | C. | (0,$\frac{8}{19}$) | D. | (0,$\frac{19}{8}$) |
分析 根据条件分别判断函数的周期性,奇偶性以及函数在一个周期上的图象,利用函数与图象之间的关系,利用数形结合进行求解即可.
解答
解:∵函数f(x)的图象关于y轴对称,
∴函数f(x)是偶函数,
由f(2+x)-f(2-x)=0得f(2+x)=f(2-x)=f(x-2),
即f(x+4)=f(x),即函数f(x)是周期为4的周期函数,
若x∈[-2,0],则x∈[0,2],
∵当x∈[0,2]时,f(x)=x,
∴当-x∈[0,2]时,f(-x)=-x,
∵函数f(x)是偶函数,
∴f(-x)=-x=f(x),
即f(x)=-x,x∈[-2,0],
则函数f(x)在一个周期[-2,2]上的表达式为f(x)=$\left\{\begin{array}{l}{x}&{0≤x≤2}\\{-x}&{-2≤x<0}\end{array}\right.$,
∵f(n)(x)=f(2n-1•x),n∈N*,
∴数f(4)(x)=f(23•x)=f(8x),n∈N*,
故f(4)(x)的周期为$\frac{1}{2}$,其图象可由f(x)的图象压缩为原来的$\frac{1}{8}$得到,
作出f(4)(x)的图象如图:
易知过M(-1,0)的斜率存在,
设过点(-1,0)的直线l的方程为y=k(x+1),设h(x)=k(x+1),
则要使f(4)(x)的图象在[0,2]上恰有8个交点,
则0<k<kMA,
∵A($\frac{7}{4}$,0),
∴kMA=$\frac{2-0}{\frac{7}{4}+1}$=$\frac{8}{11}$,
故0<k<$\frac{8}{11}$,
故选:A
点评 本题主要考查函数与方程的应用,根据条件判断函数的性质,结合数形结合是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,5] | B. | ($\frac{5}{2}$,3] | C. | (2,$\frac{5}{2}$] | D. | (2,$\frac{5}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com