精英家教网 > 高中数学 > 题目详情
(2013•浙江)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.
分析:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;
(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C-BM-D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG=
CG
GH
=
3
,从而得到tanθ=
3
,由此可得∠BDC.
解答:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ
∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=
1
4
AD
∵△BDM中,O、P分别为BD、BM的中点
∴OP∥DM,且OP=
1
2
DM,结合M为AD中点得:OP∥AD且OP=
1
4
AD
∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形
∴PQ∥OF
∵PQ?平面BCD且OF?平面BCD,∴PQ∥平面BCD;
(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH
∵AD⊥平面BCD,CG?平面BCD,∴AD⊥CG
又∵CG⊥BD,AD、BD是平面ABD内的相交直线
∴CG⊥平面ABD,结合BM?平面ABD,得CG⊥BM
∵GH⊥BM,CG、GH是平面CGH内的相交直线
∴BM⊥平面CGH,可得BM⊥CH
因此,∠CHG是二面角C-BM-D的平面角,可得∠CHG=60°
设∠BDC=θ,可得
Rt△BCD中,CD=BDcosθ=2
2
cosθ,CG=CDsinθ=2
2
sinθcosθ,BG=BCsinθ=2
2
sin2θ
Rt△BMD中,HG=
BG•DM
BM
=
2
2
3
sin2θ
;Rt△CHG中,tan∠CHG=
CG
GH
=
3cosθ
sinθ
=
3

∴tanθ=
3
,可得θ=60°,即∠BDC=60°
点评:本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),fn+1 (x)=f[fn(x)],n∈N*,则函数y=f4(x)的图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)如图F1、F2是椭圆C1
x2
4
+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)如图,点P(0,-1)是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点,C1的长轴是圆C2x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于两点,l2交椭圆C1于另一点D
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求
PG
GC
 的值.

查看答案和解析>>

同步练习册答案