分析 (1)由⊙C的方程ρ=2$\sqrt{5}$sinθ可得:ρ2=2$\sqrt{5}$ρsinθ,利用极坐标化为直角坐标的公式x=ρcosθ,y=ρsinθ即可得出.
(2)把直线l的参数方程$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入⊙C的方程得到关于t的一元二次方程,即可得到根与系数的关系,根据参数的意义可得|PA|+|PB|=|t1|+|t2|即可得出.
解答 解:(1)由⊙C的方程ρ=2$\sqrt{5}$sinθ可得:ρ2=2$\sqrt{5}$ρsinθ,化为${x}^{2}+{y}^{2}-2\sqrt{5}y=0$,
圆心坐标为(0,$\sqrt{5}$),极坐标为($\sqrt{5}$,$\frac{π}{2}$);
(2)把直线l的参数方程$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入⊙C的方程
化为t2-3$\sqrt{2}$t+4=0.
∴t1+t2=3$\sqrt{2}$,t1t2=4.∴t1>0,t2>0.
根据参数的意义可得|PA|+|PB|=|t1|+|t2|=|t1+t2|=3$\sqrt{2}$.
点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程的几何意义、直线与圆的位置关系等基础知识与基本技能方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{(\sqrt{5}-1)π}}{2}+2$ | B. | $\frac{{(\sqrt{5}+1)π}}{2}+2$ | C. | $\frac{π}{2}+3$ | D. | $\frac{{\sqrt{5}}}{2}π+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p∨q”为假命题 | B. | “p∧q”为假命题 | C. | “¬p”为真命题 | D. | “¬q”为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {-1,0,1,2} | C. | {-1,0,1} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{14}{3}$ | B. | $\frac{19}{3}$ | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{5}{9}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com