精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是(  )
A.$\frac{{(\sqrt{5}-1)π}}{2}+2$B.$\frac{{(\sqrt{5}+1)π}}{2}+2$C.$\frac{π}{2}+3$D.$\frac{{\sqrt{5}}}{2}π+2$

分析 由三视图可知这是用轴截面分成两部分的半个圆锥,圆锥是底面半径是1,高是2,母线长是$\sqrt{5}$,即可求出几何体的表面积.

解答 解:由三视图可知这是用轴截面分成两部分的半个圆锥,圆锥是底面半径是1,高是2,母线长是$\sqrt{5}$,
∴该几何体的表面积是$\frac{1}{2}π•\sqrt{5}+\frac{1}{2}π•{1}^{2}+\frac{1}{2}×2×2$=$\frac{(\sqrt{5}+1)π}{2}$+2,
故选B.

点评 本题考查由三视图得到直观图,考查求简单几何体的体积,本题不是一个完整的圆锥,只是圆锥的一部分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|mx+1|-|x-1|.
(Ⅰ)若m=1,求函数f(x)的最大值;
(Ⅱ)若m=-2,解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(-1,m),$\overrightarrow{b}$=(0,1),若向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m的值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=sin(ωx+\frac{π}{6})$(其中ω>0)图象的一条对称轴方程为x=$\frac{π}{12}$,则ω的最小值为(  )
A.2B.4C.10D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x的取值范围是[0,8],执行如图的程序框图,则输出的y≥3的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆的左焦点为F,上顶点为B,右顶点为A,当FB⊥AB时,其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C的对边分别是a,b,c,且$\frac{sinC}{sinA-sinB}$=$\frac{a+b}{a-c}$.
(Ⅰ)求角B的大小;
(Ⅱ)点D满足$\overrightarrow{BD}$=2$\overrightarrow{BC}$,且线段AD=3,求2a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(1)求圆C圆心的极坐标;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),求|PA|+|PB|.

查看答案和解析>>

同步练习册答案