分析 由已知可得2acosC+c=2b,由正弦定理,三角形内角和定理,两角和的正弦函数公式化简可得sinC=2cosAsinC,结合sinC>0,可求cosA,结合A∈(0,π),可得sinA,利用正弦定理可求△ABC的外接圆半径R,由圆的面积公式即可计算得解.
解答 解:∵a=1,2cosC+c=2b,
∴2acosC+c=2b,由正弦定理可得:2sinAcosC+sinC=2sinB,
∴2sinAcosC+sinC=2sinAcosC+2cosAsinC,可得:sinC=2cosAsinC,
∵C为三角形内角,sinC>0,
∴cosA=$\frac{1}{2}$,结合A∈(0,π),可得:sinA=$\frac{\sqrt{3}}{2}$,
∴△ABC的外接圆半径R=$\frac{a}{2sinA}$=$\frac{1}{2×\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$,可得:△ABC的外接圆的面积S=πR2=$π×(\frac{\sqrt{3}}{3})^{2}$=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,圆的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\sqrt{5}$-1 | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{16}{65}$ | B. | $\frac{16}{65}$ | C. | -$\frac{56}{65}$ | D. | $\frac{56}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.544 | B. | 0.68 | C. | 0.8 | D. | 0.85 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | 4$\sqrt{3}$-6 | C. | 4$\sqrt{3}$-2 | D. | 6-2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com