精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C,其焦点到准线的距离为2,直线l与抛物线C交于AB两点,过AB分别作抛物线C的切线交于点M

(Ⅰ)求抛物线C的方程

(Ⅱ)若,求三角形面积的最小值

【答案】(Ⅰ)

(Ⅱ)4.

【解析】

(Ⅰ)焦点到准线的距离为2等价于,即可得出答案。

(Ⅱ)设出两点,分别写出其切线与点,由可得到

再设出直线l的方程,联立直线与直线l,由可得直线l,最后求出到直线l的距离,与,即可用表示出的面积,即可求出其最小值。

(Ⅰ)焦点到准线的距离为2,即,所以求抛物线C的方程为

(Ⅱ)抛物线的方程为,即,所以

由于,所以,即

设直线l方程为,与抛物线方程联立,得所以

,所以,即l

联立方程,即:

M点到直线l的距离

所以

时,面积取得最小值4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为,且各篇学位论文是否被评议为“不合格”相互独立.

(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求

(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象在处的切线为为自然对数的底数)

(1)求的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,其中.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若存在,对任意的实数,恒有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段的端点的坐标是端点在圆上运动.

求线段的中点的轨迹的方程

设圆与曲线的两交点为求线段的长

)若点在曲线上运动轴上运动的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为

1)求椭圆的标准方程;

2是椭圆上不同的三点,若直线的斜率之积为,试问从两点的横坐标之和是否为定值?若是,求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆与圆关于直线对称.

1)求直线的方程;

2)设圆与圆交于点,点为圆上的动点,求面积的最大值.

查看答案和解析>>

同步练习册答案