精英家教网 > 高中数学 > 题目详情
在正三棱锥P—ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:
①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.
其中正确结论的序号是                 .
③④
解:取BC中点M,连接AM,PM,
则O∈AM.
∵AO=2OM,
∴OD与PM不平行,
∴OD∥平面PBC不成立,即①错误;
∵OA≠OP,D为PA中点,
∴OD⊥PA不成立,即②错误;
∵P-ABC为正三棱锥,
∴BC⊥PM,BC⊥AM,
∴BC⊥面APM,
∴OD⊥BC,即③成立;
∵PO垂直于平面ABC,OA属于平面ABC
∴PO垂直于OA
∴三角形AOP为直角三角形
∵D为AP中点
∴PA=2OD,即④成立.
故答案为:③④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

、(满分14分)如图,正方体的棱长为2,E为AB的中点.
(Ⅰ)求证:
(Ⅱ)求异面直线BD1与AD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

mn是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则   ②若,则
③若,则  ④若,则
其中正确命题的序号是 (       )
A.②和③B.①和②C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体为正四棱锥,几何体为正四面体.、
(1)求证:
(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体中,
(1)求直线和平面所成的角;
(2)M为上一点且=,在上找一点N使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在三棱柱中,
每个侧面均为正方形,为底边的中点,为侧棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右下图,在长方体ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分别是线段AB、BC上的点,且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直线EC1与FD1所成的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
一个四棱锥的三视图如图所示,E为侧棱PC上一动点。

(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).
(2)点在何处时,面EBD,并求出此时二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是正方体的棱的中点。
求证:①∥平面
②平面∥平面

查看答案和解析>>

同步练习册答案