精英家教网 > 高中数学 > 题目详情
7.已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为c<b<a.

分析 利用指数函数、对数函数的单调性求解.

解答 解:∵a=40.5>40=1,
0<b=0.54<0.50=1,
c=log0.54<log0.51=0,
∴a,b,c从小到大的排列为c<b<a.
故答案为:c<b<a.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.不等式$\frac{x-3}{x-2}≥0$的解集为(-∞,2)∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx(2$\sqrt{3}$cosx-sinx)+1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
(1)求实数a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,对于任意的x∈R,满足条件f(x)+f(-x)=0的函数是(  )
A.f(x)=x${\;}^{\frac{1}{3}}$B.f(x)=sinxC.f(x)=cosxD.f(x)=log2(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(1)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置,并求直线DE到平面AB1C1的距离;如果不存在,请说明理由;
(2)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,则a+$\frac{8}{2a+1}$的最小值为(  )
A.2$\sqrt{2}$B.4C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若非零向量$\overrightarrow a$与$\overrightarrow b$满足:$|\overrightarrow a|=2$,$(\overrightarrow a+\overrightarrow b)•\overrightarrow a=0$,$(2\overrightarrow a+\overrightarrow b)⊥\overrightarrow b$,则$|\overrightarrow b|$=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案