精英家教网 > 高中数学 > 题目详情
17.不等式$\frac{x-3}{x-2}≥0$的解集为(-∞,2)∪[3,+∞).

分析 首先将不等式化为整式不等式,然后求解集.

解答 解:原不等式等价于(x-3)(x-2)≥0且x-2≠0,
所以不等式的解集为(-∞,2)∪[3,+∞);
故答案为:(-∞,2)∪[3,+∞)

点评 本题考查了分式不等式的解法;关键是正确等价转化为整式不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{AB}$=(1,2,1),$\overrightarrow{AC}$=(0,1,-2),则平面ABC的一个法向量可以是(  )
A.(5,-2,-1)B.(-6,2,2)C.(3,1,-2)D.(4,-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法中正确的是(  )
A.奇函数f(x)的图象经过(0,0)点B.y=|x+1|+|x-1|(x∈(-4,4])是偶函数
C.幂函数y=x${\;}^{\frac{1}{2}}$过(1,1)点D.y=sin2x(x∈[0,5π])是以π为周期的函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以(2,1)为圆心且与直线y+1=0相切的圆的方程为(  )
A.(x-2)2+(y-1)2=4B.(x-2)2+(y-1)2=2C.(x+2)2+(y+1)2=4D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是R上的奇函数,且当x>0时,f(x)=x-1,则x<0时f(x)=(  )
A.-x-1B.x+1C.-x+1D.x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=$\frac{1}{{\sqrt{1+x}}}$
(1)判断f(x)在区间[0,+∞)上是否为弱减函数;
(2)当x∈[1,3]时,不等式$\frac{a}{x}≤\frac{1}{{\sqrt{1+x}}}≤\frac{a+4}{2x}$恒成立,求实数a的取值范围;
(3)若函数g(x)=f(x)+k|x|-1在[0,3]上有两个不同的零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα+cosα=$\frac{2}{3}$,则sin2α的值为(  )
A.$\frac{5}{9}$B.±$\frac{5}{9}$C.-$\frac{5}{9}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为c<b<a.

查看答案和解析>>

同步练习册答案