分析 函数$y=x+\frac{4}{x}$在(0,2)上为减函数,在(2,+∞)上为增函数,利用导数法,可证得结论.
解答 解:函数$y=x+\frac{4}{x}$在(0,2)上为减函数,在(2,+∞)上为增函数,理由如下:
∵$y=x+\frac{4}{x}$,
∴$y′=1-\frac{4}{{x}^{2}}$,
由x∈(0,+∞)得:
当x∈(0,2)时,y′<0恒成立,
当x∈(2,+∞)时,y′>0恒成立,
故函数$y=x+\frac{4}{x}$在(0,2)上为减函数,在(2,+∞)上为增函数.
点评 本题考查的知识点是利用导数研究函数的单调性,对勾函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (9,+∞) | B. | (0,$\frac{1}{9}$] | C. | [$\frac{1}{9}$,+∞) | D. | (0,9] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4}^{n}-1}{3}$ | B. | $\frac{1-{4}^{n}}{3}$ | C. | $\frac{1{6}^{n}-1}{15}$ | D. | $\frac{1-1{6}^{n}}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∩(∁UN) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a⊥α,b∥β,a⊥b,则α⊥β | B. | 若a⊥α,b∥β,a∥b,则α⊥β | ||
| C. | 若a⊥α,a⊥β,则α⊥β | D. | 若a∥β,b∥β,a∥b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p∨(¬q)”为假命题 | B. | “(¬p)∨q”为假命题 | C. | “p∧q”为真命题 | D. | “¬(p∨q)”真命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com