精英家教网 > 高中数学 > 题目详情
6.假设要考察某公司生产的500克袋装牛奶的三聚青氨是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第5个的样本个体的编号是047
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

分析 找到第7行第8列的数开始向右读,第一个符合条件的是331,第二个数是572,三个数是455,第四个数是068,第五个数是877它大于799故舍去,第五个数是047

解答 解:找到第7行第8列的数开始向右读,第一个符合条件的是331,
第二个数是572,
第三个数是455,
第四个数是068,
第五个数是877它大于799故舍去,
第五个数是047.
故答案为:047.

点评 抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,2),$\overrightarrow{b}$=(1,-1),且($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-λ$\overrightarrow{b}$|的值为$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点P,Q分别是曲线y=xe-2x和直线y=x+2上的动点,则P,Q两点间的距离的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数 f(x)=lnx+$\frac{m}{x}$,m∈R
(1)当m=1时,求f(x)的极值;
(2)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求 m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若样本x1+1,x2+1,xn+1的平均数为9,方差为3,则样本2x1+3,2x2+3,…,2xn+3,的平均数、方差是(  )
A.23,12B.19,12C.23,18D.19,18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则方程组$\left\{\begin{array}{l}{ax+by=3}\\{2x+4y=7}\end{array}\right.$只有一组解的概率为(  )
A.$\frac{11}{12}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=(sinx+cosx)2-2sin2x-m在[0,$\frac{π}{2}$]上有两个零点,则实数m的取值范围是[1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)和g(x)=2sin(2x+φ)+1(ω>0,φ∈(0,π))的图象的对称轴完全相同,则f(φ)=[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断并证明函数$y=x+\frac{4}{x}$在(0,+∞)上的单调性.

查看答案和解析>>

同步练习册答案