分析 (1)利用导数求函数极值;(2)$\frac{f(b)-f(a)}{b-a}$<1恒成立.等价于f(b)-b<f(a)-a恒成立.等价于h(x)=f(x)-x)在(0,+∞)上单调递减.
解答 解:(1)由题设,当m=1时,f(x)=ln x+$\frac{1}{x}$(x>0),
则$f'(x)=\frac{x-1}{x^2}$,令f′(x)=0,则x=1
∴当x∈(0,1),f′(x)<0,f(x)在(0,1)上单调递减,
当x∈(1,+∞),f′(x)>0,f(x)在(1,+∞)上单调递增,
∴x=1时,f(x)取得极小值f(1)=ln 1+1=1,
∴f(x)的极小值为1.
(2)对任意的b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立.
等价于f(b)-b<f(a)-a恒成立.(*)
设h(x)=f(x)-x=ln x+$\frac{m}{x}$-x(x>0),
∴(*)等价于h(x)在(0,+∞)上单调递减,
由h′(x)=$\frac{1}{x}$-$\frac{m}{x2}$-1≤0在(0,+∞)上恒成立,
得m≥(-x2+x )(x>0)恒成立,等价于m≥(-x2+x )max(x>0),
∵当x=$\frac{1}{2}$时,y=-x2+x (x>0)有最大值为$\frac{1}{4}$
∴m≥$\frac{1}{4}$
∴m的取值范围为:[$\frac{1}{4},+∞)$
点评 本题考查了利用导数求函数极值,同时考查了转化思想,把不等式恒成立问题转化为函数的单调性问题,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 70 m | B. | 72 m | C. | 75 m | D. | 80 m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com