精英家教网 > 高中数学 > 题目详情
4.设物体以速度v(t)=3t2+t(单位v:m/s,t:s)做直线运动,则它在0~4s内所走的路程s为(  )
A.70 mB.72 mC.75 mD.80 m

分析 利用定积分的物理意义得到所求.

解答 解:由已知得到物体在0~4s内所走的路程s为${∫}_{0}^{4}(3{t}^{2}+t)dt$=(t${\;}^{3}+\frac{1}{2}{t}^{2}$)|${\;}_{0}^{4}$=72;
故选B

点评 本题考查了定积分的物理意义;关键是利用定积分表示变速直线运动物体的路程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知直线l的方向向量为(2,m,1),平面α的法向量为$(1,\frac{1}{2},2)$,且l∥α,则m=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C:$\frac{x^2}{9}+\frac{y^2}{4}$=1,点M与C的焦点不重合,若M关于C的焦点对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A,B分别为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点,不同两点P,Q在双曲线上,且关于x轴对称,设直线AP,BQ的斜率分别为k1,k2,当$\frac{2b}{a}+\frac{a}{b}-\frac{1}{{2{k_1}{k_2}}}+ln|{k_1}|+ln|{k_2}|$取最小值时,双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列结论:
①设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则α⊥β是a⊥b的必要不充分条件.
②在区间[-1,1]上随机取一个数x,则cos$\frac{πx}{2}$的值介于0到$\frac{1}{2}$之间的概率为$\frac{1}{3}$
③从以正方体的顶点连线所成的直线中任取两条,则所取两条直线为异面直线的概率为$\frac{29}{63}$
④将4个相同的红球和4个相同的篮球排成一排,从左到右每个球依次对应的序号为1,2,3,…,8,若同色球之间不加区分,则4个红球对应的序号之和小于4个蓝球对应的序号之和的排列方法种数为31.
其中正确结论的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设p:x>2,q:x2>4,则p是q的充分不必要 条件;(用“充分而不必要”或“必要而不充分”或“充要”或“既不充分也不必要”填写).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,2),$\overrightarrow{b}$=(1,-1),且($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-λ$\overrightarrow{b}$|的值为$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各进制数中,最小的是(  )
A.85(3)B.210(6)C.1 000(4)D.111 111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数 f(x)=lnx+$\frac{m}{x}$,m∈R
(1)当m=1时,求f(x)的极值;
(2)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求 m的取值范围.

查看答案和解析>>

同步练习册答案