精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{9}+\frac{y^2}{4}$=1,点M与C的焦点不重合,若M关于C的焦点对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=(  )
A.6B.8C.10D.12

分析 根据已知条件,作出图形,MN的中点连接椭圆的两个焦点,便会得到三角形的中位线,根据中位线的性质及椭圆上的点到两焦点的距离和为2a即可求出|AN|+|BN|.

解答 解:设MN的中点为Q,椭圆C的左右焦点分别为F1,F2
如图,连接QF1,QF2
∵F1是MA的中点,Q是MN的中点,
∴F1Q是△MAN的中位线;
丨QF1丨=$\frac{1}{2}$丨AN丨,
同理:丨QF2丨=$\frac{1}{2}$丨NB丨,
∵Q在椭圆C上,
∴|QF1|+|QF2|=2a=6,
∴|AN|+|BN|=12.
故选D.

点评 本题考查椭圆的定义,椭圆的基本性质的应用,三角形的中位线定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.以下有四种说法,其中正确说法的个数为(  )
(1)“m是实数”是“m是有理数”的充分不必要条件;
(2)“a>b”是“a2>b2”的充要条件;
(3)“x=3”是“x2-2x-3=0”的必要不充分条件;
(4)命题“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1≤0”
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果一条直线与一个平面平行,那么就称此直线与平面构成一个“平行线面对”,在正方体ABCD-A1B1C1D1中,由任意两条棱的中点确定的直线与平面ACC1A1构成的“平行线面对”的个数是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),其离心率$e=\frac{{\sqrt{3}}}{2}$,且过点$(\sqrt{3},\frac{1}{2})$.
(1)求椭圆C的方程;
(2)若直线y=k(x-1)与椭圆C交于R,S两点.问是否在x轴上存在一点T,使当k变动时,总有∠OTS=∠OTR?若存在请求出点T,若不存在请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,A1C1⊥B1D,BC=1,AD=AA1=3.
(Ⅰ)证明:平面ACD1⊥平面B1BDD1
(Ⅱ)(1)求点B1到平面ACD1的距离;
(2)求直线B1C1与平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,D是△ABC边AB上的一点,△ACD内接于圆O,且∠CAD=∠BCD,E是CD的中点,BE的延长线交AC于点F,证明:
(1)BC是圆O的切线;
(2)$\frac{{A{B^2}}}{{B{C^2}}}$=$\frac{AF}{CF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是(  )
A.①②③B.②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设物体以速度v(t)=3t2+t(单位v:m/s,t:s)做直线运动,则它在0~4s内所走的路程s为(  )
A.70 mB.72 mC.75 mD.80 m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数a=ln(lnπ),b=lnπ,c=2lnπ,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

同步练习册答案