精英家教网 > 高中数学 > 题目详情
11.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则方程组$\left\{\begin{array}{l}{ax+by=3}\\{2x+4y=7}\end{array}\right.$只有一组解的概率为(  )
A.$\frac{11}{12}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{5}{6}$

分析 (1)由题意知本题是一个古典概型,事件(a,b)的基本事件有36个,方程组只有一个解,需满足2b-4a≠0,即b≠2a,而b=2a的事件有(1,2),(2,4),(3,6)共3个,根据古典概型概率公式得到结果

解答 解:(1)由题意知本题是一个古典概型,
事件(a,b)的基本事件有36个.
由方程组$\left\{\begin{array}{l}{ax+by=3}\\{2x+4y=7}\end{array}\right.$
可得$\left\{\begin{array}{l}{(2b-4a)x=8b-12}\\{(2b-4a)y=6-7a}\end{array}\right.$
方程组只有一个解,需满足2b-4a≠0,
即b≠2a,而b=2a的事件有(1,2),(2,4),(3,6)共3个,
所以方程组只有一个解的概率为P1=1-$\frac{3}{36}$=$\frac{11}{12}$,
故选A.

点评 本题考查古典概型,考查解方程组,是一个综合题,概率问题往往同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知直线l:y=x-1与曲线y=ln(x-a)相切,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点F是拋物线C:y2=2px(p>0)的焦点,若点M(x0,1)在C上,且|MF|=$\frac{{5{x_0}}}{4}$.
(1)求p的值;
(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}-2x({x≤0})\\{(\frac{1}{2})^x}+1({x>0})\end{array}$.
(1)画出函数f(x)的图象,并根据图象写出函数f(x)的单调区间和值域;
(2)根据图象求不等式f(x)≥$\frac{3}{2}$的解集(写答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.假设要考察某公司生产的500克袋装牛奶的三聚青氨是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第5个的样本个体的编号是047
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,若关于的方程f(x)=a恰有3个不同的实数解x1、x2、x3,则x1+x2+x3的取值范围是(  )
A.(-∞,0)B.(0,1)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|x2-4ax+3a2<0,a<0},
(1)求A∪B;
(2)若∁U(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为 (490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量;
(2)在上述抽取的40件产品中任取2件,设ξ为重量超过505克的产品数量,求ξ的分布列及数学期望E(ξ);
(3)如果一件产品的重量低于495克或超过510克都要重新包装,且把频率视作概率.现在从该流水线上每间隔30分钟都随机地取出两件产品进行检测,共取三次,若发现有需要重新包装的产品,就要停产对该流水线进行维修和调试,问:就目前的生产情况,该流水线是否需要停产?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.三个数a=60.7,b=0.76,c=log0.56的大小顺序是(  )
A.b<c<aB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案