精英家教网 > 高中数学 > 题目详情
17.设点P,Q分别是曲线y=xe-2x和直线y=x+2上的动点,则P,Q两点间的距离的最小值是$\sqrt{2}$.

分析 对曲线y=xe-2x进行求导,求出点P的坐标,分析知道,过点P直线与直线y=x+2平行且与曲线相切于点P,从而求出P点坐标,根据点到直线的距离进行求解即可.

解答 解:点P是曲线y=xe-2x上的任意一点,
和直线y=x+2上的动点Q,
求P,Q两点间的距离的最小值,
就是求出曲线y=xe-2x上与直线y=x+2平行的切线与直线y=x+2之间的距离.
由y′=(1-2x)e-2x 令y′=(1-2x)e-2x =1,解得x=0,
当x=0,y=0时,点P(0,0),
P,Q两点间的距离的最小值
即为点P(0,0)到直线y=x+2的距离dmin=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 此题主要考查导数研究曲线上某点的切线方程以及点到直线的距离公式,利用了导数与斜率的关系,这是高考常考的知识点,此题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是(  )
A.①②③B.②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=kx+b,且f(f(x))=4x-3,求k和b及f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数a=ln(lnπ),b=lnπ,c=2lnπ,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列图象中,表示y是x的函数的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点F是拋物线C:y2=2px(p>0)的焦点,若点M(x0,1)在C上,且|MF|=$\frac{{5{x_0}}}{4}$.
(1)求p的值;
(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设y=f(x)是定义在R上的函数,如果存在A点,对函数y=f(x)的图象上任意点P,P关于点A的对称点Q也在函数y=f(x)的图象上,则称函数y=f(x)关于点A对称,A称为函数f(x)的一个对称点,对于定义在R上的函数f(x),可以证明点A(a,b)是f(x)图象的一个对称点的充要条件是f(a-x)+f(a+x)=2b,x∈R.
(1)求函数f(x)=x3+3x2图象的一个对称点;
(2)函数g(x)=ax2+bx+c(a≠0)的图象是否有对称点?若存在则求之,否则说明理由;
(3)函数g(x)=$\frac{{{e^x}+3}}{{{e^x}+1}}$的图象是否有对称点?若存在则求之,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.假设要考察某公司生产的500克袋装牛奶的三聚青氨是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第5个的样本个体的编号是047
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{lo{g}_{\frac{1}{3}}x+2}$的定义域是(  )
A.(9,+∞)B.(0,$\frac{1}{9}$]C.[$\frac{1}{9}$,+∞)D.(0,9]

查看答案和解析>>

同步练习册答案