分析 利用待定系数法求解.
解答 解:由题意,f(x)=kx+b,
可得:f(f(x))=f(kx+b)=k(kx+b)+b=k2x+kb+b.
又由f(f(x))=4x-3,
可得$\left\{\begin{array}{l}{k^2}=4\\ kb+b=-3\end{array}\right.解得\left\{\begin{array}{l}k=2\\ b=-1\end{array}\right.或\left\{\begin{array}{l}k=-2\\ b=3\end{array}\right.$,
综上所述:当k=2,b=-1时,f(x)=2x-1;
当k=-2,b=3时,f(x)=-2x+3.
点评 本题考查了解析式的求法,利用待定系数法求解.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com