精英家教网 > 高中数学 > 题目详情

(本题12分)一个质地均匀的正四面体的四个面上分别标示着数字1、2、3、4,一个质地均匀的骰子(正方体)的六个面上分别标示数字1、2、3、4、5、6,先后抛掷一次正四面体和骰子。
⑴列举出全部基本事件;
⑵求被压在底部的两个数字之和小于5的概率;
⑶求正四面体上被压住的数字不小于骰子上被压住的数字的概率。

                
            
              
             
每个基本事件出现的可能性相同.
.
.

解析试题分析:⑴ 用数对标示正四面体上和骰子上被压住的两个数字,列举所有基本事件如下:
               
            
              
             
每个基本事件出现的可能性相同.              …………………………4分
⑵ 由⑴知基本事件总数24.
设“被压在底部的两个数字之和小于5”为事件,则包括 、 等6个基本事件,事件发生的概率. ………8分
⑶ 设“正四面体上被压住的数字不小于骰子上被压住的数字”为事件,则包括等10个基本事件,事件发生的概率.      ……………………………………12分
考点:本题主要考查古典概型概率的计算。
点评:基础题,古典概型概率的计算,公式明确,关键是计算基本事件数要准确,可借助于“树图法”“坐标法”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨
标准煤)的几组对照数据:

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产
l00吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5="66.5"  
用最小二乘法求线性回归方程系数公式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为.

(Ⅰ)求直方图中的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据。

x
3
4
5
6
y
2.5
3
4
4.5
(1)请根据上表提供的数据, y关于x的线性回归方程
(2)已知该厂技改前100吨甲产品生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .若备选的5个居民小区中有三个非低碳小区,两个低碳小区.

(1)求所选的两个小区恰有一个为“非低碳小区”的概率;
(2)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为1:2,数据如图1所示,经过大力宣传,三个月后又进行一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表

小麦产量





频数
10
35
40
10
5
表2:不施用新化肥小麦产量频数分布表
小麦产量




频数
15
50
30
5
(10)     完成下面频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
 
小麦产量小于20kg
小麦产量不小于20kg
合计
施用新化肥


 
不施用新化肥


 
合计
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

 
文艺节目
新闻节目
总计
20至40岁
40
10
50
大于40岁
20
30
50
总计
60
40
100
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
 
P(k2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8∶00~12∶00间各自的车流量(单位:百辆),得如图所示的统计图,试求:

(1)甲、乙两个交通站的车流量的极差分别是多少?
(2)甲交通站的车流量在间的频率是多少?
(3)根据该茎叶图结合所学统计知识分析甲、乙两个交通站哪个站更繁忙?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5 月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请回答下列问题:

(1)本次活动共有多少件作品参加评比?
(2)经过评比,第四组和第六组分别有10件和2件 作品获奖,问这两组哪组获奖率更高?

查看答案和解析>>

同步练习册答案